Thermochemistry of Organophosphorus Compounds. Part I. Trimethyl and Triethyl Phosphites.

By C. L. Chernick, H. A. Skinner, and (in part) C. T. Mortimer.

[Reprint Order No. 6463.]
Values are reported for the heat of esterification of phosphorus trichloride by methanol and by ethanol in cyclohexane. The heats of formation of the trialkyl phosphites are derived, viz., $\Delta H_{f}{ }^{\circ}\left[\mathrm{P}(\mathrm{OMe})_{3}\right.$, liq. $]=-\mathbf{1 7 5 . 0}$ and $\Delta H_{f}{ }^{\circ}\left[\mathrm{P}(\mathrm{OEt})_{3}\right.$, liq. $]=-204 \cdot 1 \mathrm{kcal} . / \mathrm{mole}$.

The mean bond dissociation energies, $\bar{D}(\mathrm{P}-\mathrm{OR})$, are calculated to lie within the range $79-82 \mathrm{kcal} . / \mathrm{mole}$.

Neale and Williams (J., 1955, 2485) recently studied the thermochemistry of some organophosphorus compounds, making extensive use of reaction calorimetry. We have made similar studies, and acknowledge the advice and assistance given us (from their prior experience) by Neale and Williams. In this paper we report some measurements on the heats of reaction of phosphorus trichloride with methanol, and with ethanol, using essentially the experimental procedure employed by Neale and Williams in their studies of phosphorus trichloride-alcohol reactions. Our value for the heat of formation ($\Delta H_{f}{ }^{\circ}$) of triethyl phosphite agrees closely with that given by Neale and Williams; a value for trimethyl phosphite has not previously been given.

Experimental

Compounds.-Commercial pbosphorus trichloride was fractionally distilled in dry nitrogen, and finally in a vacuum into glass ampoules which were then sealed. cycloHexane (spectroscopic grade) was dried over sodium, and dimethylaniline ("AnalaR") over potassium hydroxide pellets. Ethanol was clinical-grade absolute, and methanol a high-quality synthetic product. Triethyl phosphite was prepared by Ford-Moore and Perry's method (Org. Synth., 1951, 31, 111), and purified by fractional distillation under reduced (nitrogen) pressure through an $8^{\prime \prime}$ gauze-packed column; it had b. p. $54 \cdot 3-54 \cdot 8^{\circ} / 15 \mathrm{~mm}$.

Calorimeter.-The calorimeter was described by Mortimer and Skinner ($J ., 1952,4331$). The esterifications were carried out in the Dewar vessel by breaking ampoules containing known weights of phosphorus trichloride under the surface of $750 \mathrm{c} . \mathrm{c}$. of cyclohexane, to which known amounts of alcohol and dimethylaniline had been added. The ensuing temperature changes were followed through the change in resistance of a shielded thermistor element immersed in the solution. The calorimeter was calibrated electrically by the substitution method.

Units.-All heat quantities are given in units of the thermochemical calorie, 1 cal. \equiv $4 \cdot 1840$ abs. joule. The reactions were carried out at 25°.

Results.-The observed heats of reaction ($\Delta H_{\text {obs. }}$) refer to the equation :
PCl_{3} (liq.) $+\left\{n \mathrm{ROH}+n \mathrm{Ph} \cdot \mathrm{NMe}_{3}\right\}($ (cyclohexane soln.) \longrightarrow

$$
\begin{align*}
& \left.n \mathrm{ROH}+n \mathrm{Ph}^{n} \cdot \mathrm{NMe}_{\}}\right\}(c y c l o h e x a n e ~ s o l n .) \tag{1}\\
& \left\{\mathrm{P}(\mathrm{OR})_{3}+(n-3) \mathrm{ROH}+(n-3) \mathrm{Ph} \cdot \mathrm{NMe}_{2}\right\} \text { (soln.) }+3 \mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl} \text { (cryst.) }
\end{align*}
$$

where $R=M e$ or Et. For the reactions with ethanol, values of n ranging from $3 \cdot 3$ to $8 \cdot 0$ were used, although in most experiments n was $4 \cdot 0$. For the reactions with methanol, n was $4 \cdot 0$ throughout. The reaction times, with $n=4$ (or larger), varied somewhat but were generally less than an hour. Reaction to completion was appreciably slower for n values less than 4.

Esterification by Ethanol.-A selection of values of $\Delta H_{\mathrm{obs} \text {. for the ethanol-phosphorus tri- }}$ chloride reaction is given in Table 1. The decrease in $\Delta H_{\text {obs. }}$ for values of $n>4$ is a consequence of the dependence of the heat of solution of ethanol in cyclohexane on the relative concentrations of the components. Values of the heat of solution of ethanol in ethanol-cyclohexane solutions were measured separately, and are given in Table 2. The heats of solution in cyclohexane of dimethylaniline and triethyl phosphite were also measured independently, and found to be 1.60 and $1.32 \mathrm{kcal} . / \mathrm{mole}$, respectively. For the derivation of $\Delta H_{f}^{\circ}\left[\mathrm{P}(\mathrm{OEt})_{3}\right.$, liq.], it is useful to use the $\Delta H_{\text {corr. }}$ values given in the final column of Table 1 ; these are obtained from $\Delta H_{\text {obs. }}$ on removal of all those heat terms due to the use of cyclohexane solvent, so that $\Delta H_{\text {corr. }}$ is the heat of the idealised reaction :

$$
\begin{equation*}
\mathrm{PCl}_{3} \text { (liq.) }+3 \mathrm{EtOH} \text { (liq.) }+3 \mathrm{Ph} \cdot \mathrm{NMe}_{2} \text { (liq.) } \longrightarrow \mathrm{P}(\mathrm{OEt})_{3} \text { (liq.) }+3 \mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl} \text { (cryst.) . } \tag{2}
\end{equation*}
$$

Table 1. Reaction of PCl_{3} with excess of ethanol.

$\underset{(\mathrm{g} .)}{\mathrm{PCl}_{3}}$	$\begin{gathered} n \\ (\mathrm{eqn.} \end{gathered}$	$-\underset{(\mathrm{kc}}{-\Delta H_{\mathrm{ob}}}$	$\text { - } \Delta H_{\text {corr. }}$	$\begin{gathered} \mathrm{PCl}_{3} \\ (\mathrm{~g} .) \end{gathered}$	$\begin{gathered} n \\ (\mathrm{eqn} .1) \end{gathered}$	$-\underset{(\mathrm{k}}{-\Delta H_{\mathrm{o}}}$	$\begin{aligned} & -\Delta H_{\text {corr. }} \\ & \text { le) } \end{aligned}$
0.6572	$4 \cdot 0$	95.0	$74 \cdot 3$	0.6313	$5 \cdot 0$	$95 \cdot 2$	$75 \cdot 3$
$0 \cdot 6323$	$4 \cdot 0$	$94 \cdot 9$	$74 \cdot 2$	0.6198	$7 \cdot 0$	92.7	$74 \cdot 7$
$0 \cdot 6991$	$4 \cdot 0$	$95 \cdot 3$	$74 \cdot 6$	$0 \cdot 6286$	8.0	$92 \cdot 1$	76•1
Mean $\Delta H_{\text {corr. }}=-74 \cdot 8 \mathrm{kcal} . / \mathrm{mole}$.							

Table 2. Heat of solution of EtOH in cyclohexane-ethanol.

	EtOH				EtOH		
EtOH	present	Ratio	ΔH mixing	EtOH	present	Ratio	ΔH mixing
added (g.)	initially (g.)	initial:finish EtOH	(kcal./mole of added EtOH)	added (g.)	initially (g.)	$\begin{aligned} & \text { initial : final } \\ & \text { EtOH } \end{aligned}$	(kcal./mole of added EtOH)
$0 \cdot 6351$	$0 \cdot 21$	1: 4	$5 \cdot 73$	$0 \cdot 6276$	$0 \cdot 84$	4:7	$4 \cdot 83$
$0 \cdot 6428$	$0 \cdot 42$	2:5	$5 \cdot 47$	0.6671	$1 \cdot 11$	5:8	$4 \cdot 19$
$0 \cdot 6232$	0.53	2.5:5.5	$5 \cdot 25$	$0 \cdot 6337$	$1 \cdot 16$	$5 \cdot 5: 8 \cdot 5$	$4 \cdot 18$
0-6376	$0 \cdot 64$	3: 6	$5 \cdot 01$				

Esterification by Methanol.-A selection from the observed heats of reaction is given in Table 3. In these reactions, the amount of alcohol used was adjusted to $n=4.0$ (eqn. 1) in all cases. The heat of solution of methanol in methanol-cyclohexane for this concentration range was measured separately : $\Delta H_{\text {mixing }}(1: 4)=5.70 \mathrm{kcal}$. per mole of MeOH added. The heat of solution of trimethyl phosphite in cyclohexane is assumed to be the same as that measured for triethyl phosphite.

Table 3. Reaction of PCl_{3} with excess of methanol.

$\begin{gathered} \mathrm{PCl}_{3} \\ (\mathrm{~g} .) \end{gathered}$	$\begin{gathered} n \\ (\mathrm{eqn.} \mathrm{n} .1) \end{gathered}$	$\underset{(\mathrm{kc}}{-\Delta H_{\mathrm{ob}}}$	(kcal./mole)	$\underset{(\mathrm{g} .)}{\mathrm{PCl}_{3}}$	$\left(e^{n}\right.$	$-\underset{(\mathrm{kc}}{\Delta H_{\mathrm{ob}}}$	$-\Delta H_{\text {corr. }}$ e)
$0 \cdot 6898$	$4 \cdot 0$	$94 \cdot 05$	$73 \cdot 45$	$0 \cdot 7663$	$4 \cdot 0$	95-15	$74 \cdot 55$
$0 \cdot 6399$,,	$94 \cdot 2$	$73 \cdot 6$	$0 \cdot 6335$,,	$95 \cdot 0$	$74 \cdot 4$
$0 \cdot 6390$	"	$93 \cdot 6$	$73 \cdot 0$	$0 \cdot 6124$,"	93.5	$72 \cdot 9$
Mean $\Delta H_{\text {corr. }}=-73.7 \mathrm{kcal} . / \mathrm{mole}$.							

Heats of Formation.-The heats of formation of the alkyl phosphites are related to the corresponding $\Delta H_{\text {corr. }}$ through the thermochemical equation :

$$
\begin{align*}
\Delta H_{f}{ }^{\mathrm{c}}\left[\mathrm{P}(\mathrm{OR})_{3}, \text { liq. }\right]=\Delta H_{\text {corr. }}+\Delta H_{f}^{\circ}\left(\mathrm{PCl}_{3}, \text { liq. }\right) & +3 \Delta H_{f}^{\circ}(\mathrm{ROH}, \text { liq. }) \\
& +3\left\{\Delta H_{f}{ }^{\circ}\left(\mathrm{Ph} \cdot \mathrm{NMe}_{2}, \text { liq. }\right)-\Delta H_{f}^{\circ}\left(\mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl}, \text { cryst. }\right)\right\} \tag{3}
\end{align*}
$$

The difference $\Delta H_{f}{ }^{\circ}\left(\mathrm{Ph} \cdot \mathrm{NMe}_{2}\right.$, liq. $)-\Delta H_{f}{ }^{\circ}\left(\mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl}\right.$, cryst.) was measured in the following manner. Dimethylaniline was dissolved in excess of N -hydrochloric acid :

$$
\begin{gathered}
\mathrm{Ph} \cdot \mathrm{NMe}_{2} \text { (liq.) }+\mathrm{HCl}, 54 \mathrm{H}_{2} \mathrm{O}+\text { excess of acid solution } \longrightarrow \mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl} \text { in acid solution } \\
\Delta H=-6 \cdot 54 \pm 0 \cdot 1 \mathrm{kcal} . / \text { mole }
\end{gathered}
$$

The heat of solution of crystalline dimethylaniline hydrochloride in excess of N -hydrochloric acid was also measured directly :

$$
\begin{gathered}
\mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl} \text { (cryst.) }+ \text { excess of acid solution } \longrightarrow \mathrm{Ph} \cdot \mathrm{NMe}_{2}, \mathrm{HCl} \text { in acid solution. } \\
\Delta H=1.93 \pm 0.05 \mathrm{kcal} . / \mathrm{mole}
\end{gathered}
$$

Whence, using $\Delta H_{f}^{\circ}\left(\mathrm{HCl}, 54 \mathrm{H}_{2} \mathrm{O}\right)=-39.60 \mathrm{kcal}$./mole (Nat. Bur. Stand. Tables, Circular 500), we derive for the difference required, $48.07 \pm 0.08 \mathrm{kcal} . / \mathrm{mole}$. Of the remaining terms in eqn. (3), $\Delta H_{f}{ }^{\circ}(\mathrm{EtOH}$, liq. $)=-66.36 \mathrm{kcal} . / \mathrm{mole}$ and $\Delta H_{f}{ }^{\circ}(\mathrm{MeOH}, \mathrm{liq})=.-57.04 \mathrm{kcal} . / \mathrm{mole}$ are well-established ($o p$. cit.) : the value $\Delta H_{f}{ }^{\circ}\left(\mathrm{PCl}_{3}\right.$, liq. $)=-\mathbf{7 4 . 4} \mathrm{kcal} . / \mathrm{mole}$, recently obtained by Neale and Williams (J., 1954, 2156), is accepted here. Accordingly, from the mean $\Delta H_{\text {corr }}$. values in Tables 1 and 3, and eqn. (3), we derive : $\Delta H_{f}{ }^{\circ}\left[\mathrm{P}(\mathrm{OMe})_{3}\right.$, liq. $]=-175.0 \mathrm{kcal} . / \mathrm{mole}$, and $\Delta H_{f}{ }^{\circ}\left[\mathrm{P}(\mathrm{OEt})_{3}\right.$, liq. $]=-204.1 \mathrm{kcal} . / \mathrm{mole}$. The absolute limits of error to be attached to these values are difficult to assess, since the accepted value for $\Delta H_{f}{ }^{\circ}\left(\mathrm{PCl}_{3}\right.$, liq.) is itself subject to possible error latent in the heat of formation of phosphoric acid. The experimental errors in our $\Delta H_{\text {corr. }}$ values we would assess at $c a . \pm 1 \mathrm{kcal} . / \mathrm{mole}$.

Discussion.-The value of $\Delta H_{f}{ }^{\circ}\left[\mathrm{P}(\mathrm{OEt})_{3}\right.$, liq. $]$ reported here is in good agreement (within the error limits of the individual determinations) with that given by Neale and Williams (loc. cit.). It may also be remarked that the difference between the heats of formation of liquid trimethyl phosphite and triethyl phosphite ($29 \cdot 1 \mathrm{kcal} . / \mathrm{mole}$) is of similar magnitude to the difference between the heats of formation of liquid trimethyl and triethyl arsenites ($27.5 \mathrm{kcal} . / \mathrm{mole}$; Charnley, Mortimer, and Skinner, J., 1953, 1181), and between the heats of formation of liquid trimethyl and triethyl borates ($27.3 \mathrm{kcal} . / \mathrm{mole}$; Charnley, Skinner, and Smith, J., 1952, 2288).

The mean bond dissociation energies $\bar{D}(\mathrm{P}-\mathrm{OR})$ [defined as one-third of the heat required to dissociate one mole of gaseous $\mathrm{P}(\mathrm{OR})_{3}$ into gaseous P atoms and $\cdot \mathrm{OR}$ radicals] may be calculated from the heats of formation, in conjunction with the following subsidiary thermal data: $\Delta H_{f}{ }^{\circ}(\mathrm{P}, \mathrm{g})=.75 \cdot 2 \mathrm{kcal} . / \mathrm{mole}(o p$. cit. $), \Delta H_{f}{ }^{\circ}(\cdot \mathrm{OMe}, \mathrm{g})=.-1 \cdot 3 \pm 2 \mathrm{kcal} . / \mathrm{mole}$, $\Delta H_{f}{ }^{\circ}(\cdot \mathrm{OEt}, \mathrm{g})=.-8.1 \pm 1 \mathrm{kcal} . / \mathrm{mole}$ (Charnley, Mortimer, and Skinner, loc. cit.), and $\Delta H_{\text {vap. }}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]=8.8 \mathrm{kcal} . / \mathrm{mole}, \quad \Delta H_{\text {vap. }}\left[\mathrm{P}(\mathrm{OEt})_{3}\right]=10.0 \mathrm{kcal} . / \mathrm{mole}$ (estimated from vapour-pressure data in the literature). We obtain $\bar{D}(\mathrm{P}-\mathrm{OMe})=79 \cdot 2$ and $\bar{D}(\mathrm{P}-\mathrm{OEt})=$ 81.7 kcal./mole. Gray (Proc. Roy. Soc., 1954, 221, A, 462) has recently given slightly different values from the above for the heats of formation of $\cdot \mathrm{OMe}$ and $\cdot \mathrm{OEt}$ radicals, viz., $\Delta H_{f}^{\circ}(\cdot \mathrm{OMe}, \mathrm{g})=$.-0.5 and $\Delta H_{f}{ }^{\circ}(\cdot \mathrm{OEt}, \mathrm{g})=.-9 \cdot 0 \mathrm{kcal} . / \mathrm{mole}$. With these values we obtain 80.0 and 80.8 kcal ./mole, respectively, for $\bar{D}(\mathrm{P}-\mathrm{OMe})$ and $\bar{D}(\mathrm{P}-\mathrm{OEt})$.

The authors are glad to acknowledge the assistance and advice given them by Mr. L. T. D. Williams and Mr. E. Neale.

